题目内容
在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)
(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.
(Ⅰ)点在直线上(Ⅱ)
解析试题分析:(I)把极坐标系下的点化为直角坐标,得.
因为点的直角坐标(0,4)满足直线的方程,
所以点在直线上. ……5分
(II)设点的坐标为,则点到直线的距离为
.
由此得,当时,取得最小值,且最小值为 . ……10分
考点:本小题主要考查极坐标和直角坐标的互化和参数方程的应用,以及三角函数的化简求值.
点评:解决此类问题的关键是正确进行极坐标和直角坐标的转化,利用公式求解即可,另外,参数方程在求最值时比较好用,要灵活应用.
练习册系列答案
相关题目