题目内容
10.已知m>-2,求$\frac{4}{m+2}$+2m的最小值及最小值时m的值.分析 当m>-2,变形$\frac{4}{m+2}$+2m=$2(\frac{2}{m+2}+m+2)$-4,利用基本不等式的性质即可得出.
解答 解:当m>-2,
$\frac{4}{m+2}$+2m=$2(\frac{2}{m+2}+m+2)$-4$≥2×2\sqrt{\frac{2}{m+2}•(m+2)}$-4=4$\sqrt{2}$-4,当且仅当m=$\sqrt{2}$-2时取等号.
点评 本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关题目
20.已知 $sin(α+\frac{π}{6})-cosα=\frac{1}{3}$,则 $2sinαcos(α+\frac{π}{6})$=( )
A. | $-\frac{5}{18}$ | B. | $\frac{5}{18}$ | C. | $-\frac{7}{9}$ | D. | $\frac{7}{9}$ |
1.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(3,m).若向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为3,则实数m=( )
A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 0 | D. | -$\sqrt{3}$ |
15.某牛奶厂要将一批牛奶用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且运费由厂商承担.若厂商恰能在约定日期(×月×日)将牛奶送到,则城市乙的销售商一次性支付给牛奶厂20万元;若在约定日期前送到,每提前一天销售商将多支付给牛奶厂1万元;若在约定日期后送到,每迟到一天销售商将少支付给牛奶厂1万元.为保证牛奶新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送牛奶,已知下表内的信息:
(Ⅰ)记汽车选择公路1运送牛奶时牛奶厂获得的毛收入为ξ(单位:万元),求ξ的分布列和数学期望E(ξ);
(Ⅱ)如果你是牛奶厂的决策者,你选择哪条公路运送牛奶有可能让牛奶厂获得的毛收入更多?
(注:毛收入=销售商支付给牛奶厂的费用-运费)
统计信息 | 在不堵车的情况下到达城市乙所需时间(天) | 在堵车的情况下到达城市乙所需时间(天) | 堵车的概率 | 运费(万元) |
公路1 | 2 | 3 | $\frac{1}{10}$ | 1.6 |
公路2 | 1 | 4 | $\frac{1}{2}$ | 0.8 |
(Ⅱ)如果你是牛奶厂的决策者,你选择哪条公路运送牛奶有可能让牛奶厂获得的毛收入更多?
(注:毛收入=销售商支付给牛奶厂的费用-运费)
2.已知函数f(x)=asinωxcosωx+$\sqrt{3}$cos2ωx(a>0,ω>0)的最小正周期为$\frac{π}{2}$,最小值为-$\frac{\sqrt{3}}{2}$,将函数f(x)的图象向左平移φ(φ>0)个单位后,得到的函数图象的一条对称轴为x=$\frac{π}{8}$,则φ的值不可能为( )
A. | $\frac{5π}{24}$ | B. | $\frac{13π}{24}$ | C. | $\frac{17π}{24}$ | D. | $\frac{23π}{24}$ |