题目内容

4.已知数列{an}满足:a1=2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}(n∈{N^*})$,则a1a2…a2015的值是(  )
A.-6B.3C.2D.1

分析 通过计算出前几项的值确定周期,进而计算可得结论.

解答 解:依题意,a2=$\frac{1+{a}_{1}}{1-{a}_{1}}$=$\frac{1+2}{1-2}$=-3,
a3=$\frac{1{+a}_{2}}{1-{a}_{2}}$=$\frac{1-3}{1+3}$=-$\frac{1}{2}$,
a4=$\frac{1+{a}_{3}}{1-{a}_{3}}$=$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$,
a5=$\frac{1+{a}_{4}}{1-{a}_{4}}$=$\frac{1+\frac{1}{3}}{1-\frac{1}{3}}$=2,
∴数列{an}是以4为周期的周期数列,且a1a2a3a4=2•(-3)•(-$\frac{1}{2}$)•$\frac{1}{3}$=1,
又∵2015=503•4+3,
∴a1a2…a2015=1503•a1a2a3=2•(-3)•(-$\frac{1}{2}$)=3,
故选:B.

点评 本题考查数列的通项,找出周期是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网