题目内容
15.点M(1,1)到抛物线y=ax2的准线的距离为2,则a=( )A. | $\frac{1}{4}$或$-\frac{1}{12}$ | B. | $-\frac{1}{12}$ | C. | $\frac{1}{4}$ | D. | 4或-12 |
分析 求出抛物线的准线方程,利用点到直线的距离公式求解即可.
解答 解:抛物线y=ax2化为:x2=$\frac{1}{a}$y,它的准线方程为:y=-$\frac{1}{4a}$,
点M(1,1)到抛物线y=ax2准线的距离为2,
可得|1+$\frac{1}{4a}$|=2,解得a=$\frac{1}{4}$或-$\frac{1}{12}$.
故选:A.
点评 本题考查抛物线的简单性质的应用,基本知识的考查.
练习册系列答案
相关题目
6.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是π,若其图象向右平移$\frac{π}{3}$个单位后得到的函数为奇函数,则函数f(x)的图象( )
A. | 关于点$(\frac{π}{6},0)$对称 | B. | 关于x=$\frac{π}{6}$对称 | C. | 关于点($\frac{π}{12}$,0)对称 | D. | 关于x=$\frac{π}{12}$对称 |
3.寒假期间,很多同学都喜欢参加“迎春花市摆档口”的社会实践活动,下表是今年某个档口某种精品的销售数据.
已知摊位租金900元/档,售余精品可以以进货价退回厂家.
(1)画出表中10个销售数据的茎叶图,并求出这组数据的中位数;
明年花市期间甲、乙两位同学想合租一个摊位销售同样的精品,其中甲、乙分别承包白天、晚上的精品销售,承包时间段内销售所获利润归承包者所有.如果其它条件不变,以今年的数据为依据,甲、乙两位同学应如何分担租金才较为合理?
日期 | 2月14日 | 2月15日 | 2月16日 | 2月17日 | 2月18日 | |
销售量(件) | 白天 | 35 | 32 | 43 | 39 | 51 |
晚上 | 46 | 42 | 50 | 52 | 60 |
(1)画出表中10个销售数据的茎叶图,并求出这组数据的中位数;
明年花市期间甲、乙两位同学想合租一个摊位销售同样的精品,其中甲、乙分别承包白天、晚上的精品销售,承包时间段内销售所获利润归承包者所有.如果其它条件不变,以今年的数据为依据,甲、乙两位同学应如何分担租金才较为合理?
7.深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.
申请意向 年龄 | 摇号 | 竞价(人数) | 合计 | |
电动小汽车(人数) | 非电动小汽车(人数) | |||
30岁以下 (含30岁) | 50 | 100 | 50 | 200 |
30至50岁 (含50岁) | 50 | 150 | 300 | 500 |
50岁以上 | 100 | 150 | 50 | 300 |
合计 | 200 | 400 | 400 | 1000 |
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.