题目内容
【题目】正四棱柱,中,,E为中点,F为AD中点.
(1)证明:平面;
(2)若直线AC与平面所成的角为,求的长.
【答案】(1)见解析;(2)
【解析】
(1)法1:以A为坐标原点,为轴,为轴,为轴, 建立空间直角坐标系,求出平面的一个法向量,由,证出,再由线面平行的判定定理即可证出;法2:连接交于O,连接EO,OF,证出,且,从而证出,再利用线面平行的判定定理即可证出.
(2)由,,利用即可求解.
(1)法1:以A为坐标原点,为轴,为轴,为轴,
建立空间直角坐标系,
设,则,,,
,,,
故,,,
设平面的法向量
,不妨取,得平面的一个法向量,
,,
又平面,所以平面.
法2:连接交于O,则O为中点.
连接EO,OF.
因为正四棱柱,
所以,且,又因为E为中点,
∴,且.
中,O,F为中点,
∴,且,
∴,且.
∴为平行四边形,∴,
又平面,平面,所以平面.
(2),则.
直线AC与平面AED,所成的角为,
即,
解得,即的长为.
【题目】近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如图的列联表:
患三高疾病 | 不患三高疾病 | 合计 | |
男 | 6 | 30 | |
女 | |||
合计 | 36 |
(1)请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽人,其中女性抽多少人?
(2)为了研究三高疾病是否与性别有关,请计算出统计量,并说明你有多大的把握认为三高疾病与性别有关?
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式,其中)
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15-65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄 | |||||
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中.
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动、现从这8人中随机抽2人.记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;
(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求.
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |