题目内容
15.设平面内的四边形ABCD和点O,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,$\overrightarrow{OD}$=$\overrightarrow{d}$.若$\overrightarrow{a}+\overrightarrow{c}=\overrightarrow{b}+\overrightarrow{d}$.则四边形ABCD的形状是平行四边形.分析 可由条件得到$\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}$,根据向量减法的几何意义便可得到$\overrightarrow{BA}=\overrightarrow{CD}$,从而得到BA∥CD,且BA=CD,这样即可得出四边形ABCD为平行四边形.
解答 解:由条件可得,$\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}$;
∴$\overrightarrow{OA}-\overrightarrow{OB}=\overrightarrow{OD}-\overrightarrow{OC}$;
∴$\overrightarrow{BA}=\overrightarrow{CD}$;
∴$\overrightarrow{BA}$$∥\overrightarrow{CD}$,且$|\overrightarrow{BA}|=|\overrightarrow{CD}|$;
∴BA∥CD,且BA=CD;
∴四边形ABCD为平行四边形.
故答案为:平行四边形.
点评 考查向量减法的几何意义,相等向量的概念,向量平行的概念,以及平行四边形的定义.
练习册系列答案
相关题目
6.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(1,2),则向量$\overrightarrow{m}$与向量$\overrightarrow{n}$不共线的概率是( )
A. | $\frac{1}{6}$ | B. | $\frac{1}{12}$ | C. | $\frac{11}{12}$ | D. | $\frac{1}{18}$ |
10.已知θ∈R,且sinθ-2cosθ=$\sqrt{5}$,则tan2θ=( )
A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
7.不等式-3x2<0的解集为( )
A. | ∅ | B. | R | C. | (-∞,0)∪(0,+∞) | D. | (-$\sqrt{3}$,$\sqrt{3}$) |
4.定义在R上的函数f(x)对任意0<x2<x1都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1.且函数y=f(x)的图象关于原点对称,若f(2)=2,则不等式f(x)-x>0的解集是( )
A. | (-2,0)∪(0,2) | B. | (-∞,-2)∪(2,+∞) | C. | (-∞,-2)∪(0,2) | D. | (-2,0)∪(2,+∞) |