题目内容
【题目】如图,已知, ,且是的中点,.
(1)求证:;
(2)求证:平面平面;
(3)求与平面所成角的正弦值.
【答案】(1)证明见解析;(2)证明见解析;(3)。
【解析】
(1)取的中点,可以利用中位线定理,根据已知的平行关系和长度关系,可以得到一个平行四边形,利用平行四边形的对边平行,这样得到线线平行,也就能证明出线面平行;
(2)通过已知和(1)可知,通过线面垂直和平行线的性质,可以这样可以证明出线面垂直,而从而证明出平面利用面面垂直的判定定理可以证明出平面平面;
(3)通过(2)证明出的线面垂直关系,找到线面角,利用勾股定理、平行四边形的性质,求出相关的边,利用正弦的定义,求出与平面所成角的正弦值。
(1)如上图,取的中点,连接,
由是的中点,且又,且
且. 是平行四边形,从而,
又平面,平面, 因此;
(2)证明:是的中点,,
因为平面,,所以平面,
又平面 而 平面
由可知平面 平面,平面平面;
(3)由(2)知平面 是在平面的射影,则与平面所成的角为,因为,所以,由(1)可知:
是平行四边形,从而,
在中,
与平面所成角的正弦值是。
【题目】
某学校高一数学兴趣小组对学生每周平均体育锻炼小时数与体育成绩优秀(体育成绩满分100分,不低于85分称优秀)人数之间的关系进行分析研究,他们从本校初二,初三,高一,高二,高三年级各随机抽取了40名学生,记录并整理了这些学生周平均体育锻炼小时数与体育成绩优秀人数,得到如下数据表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均体育锻炼小时数工(单位:小时) | 14 | 11 | 13 | 12 | 9 |
体育成绩优秀人数y(单位:人) | 35 | 26 | 32 | 26 | 19 |
该兴趣小组确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.
(1)若选取的是初三,高一,高二的3组数据,请根据这3组数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过1,则认为得到的线性回归方程是可靠的,试问(1)中所得到的线性回归方程是否可靠?
参考数据:,.
参考公式:,.