题目内容

(12分)  如图8-12,球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积。
解 如图8-12,设过A、B、C三点的球的截面圆半径为r,圆心为O′,球心到该圆面的距离为d。在三棱锥P—ABC中,
∵PA,PB,PC两两互相垂直,且PA=PB=PC=a,
∴AB=BC=CA=a,且P在△ABC内的射影即是△ABC的中心O′。
由正弦定理,得 =2r,∴r=a。
又根据球的截面的性质,有OO′⊥平面ABC,而PO′⊥平面ABC,
∴P、O、O′共线,球的半径R=。又PO′===a,
∴OO′="R" - a=d=,(R-a)2=R2 – (a)2,解得R=a,
∴S=4πR2=3πa2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网