题目内容

已知向量
m
=(sin(A-B),sin(
π
2
-A)
),
n
=(1,2sinB),且
m
n
=-sin2C,其中A、B、C分别为△ABC的三边a、b、c所对的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=
3
2
sinC
,且S△ABC=
3
,求边c的长.
分析:(I)根据向量数量积的坐标公式,结合题意得
m
n
=sin(A+B)=-sin2C,利用二倍角的三角函数公式和诱导公式化简得cosC=-
1
2
,由此即可算出角C的大小;
(II)根据题意,由正弦定理得到a+b=
3
2
c
.由三角形面积公式算出ab=4,再由余弦定理c2=a2+b2-2abcosC的式子联解,即可算出c=
4
5
5
解答:解:(Ⅰ)∵向量
m
=(sin(A-B),sin(
π
2
-A)
),
n
=(1,2sinB),
m
n
=sin(A-B)+2sin(
π
2
-A)
sinB=sin(A-B)+2cosAsinB=sin(A+B)
m
n
=-sin2C,∴sin(A+B)=-sin2C,
∵sin(A+B)=sn(π-C)=sinC,
∴sinC=-2sinCcosC,
结合sinC>0,得-2cosC=1,cosC=-
1
2

∵C∈(0,π),∴C=
3

(Ⅱ)∵sinA+sinB=
3
2
sinC

∴由正弦定理得a+b=
3
2
c

又∵S△ABC=
1
2
absinC=
3
4
ab=
3
,∴ab=4,
由余弦定理c2=a2+b2-2abcosC=(a+b)2-ab
∴c2=
9
4
c2-ab,可得
5c2
4
=ab=4,解之得c=
4
5
5
点评:本题给出向量含有三角函数式的坐标形式,在已知数量积的情况下解△ABC.着重考查了向量的数量积、三角恒等变换和正余弦定理等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网