题目内容
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
昼夜温差 | ||||||
就诊人数(个) | 16 |
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是月与月的两组数据,请根据至月份的数据,求出 关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/15/5e628df7/SYS201712291544309711452715_ST/SYS201712291544309711452715_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
【答案】(1);(2);(3)该小组所得线性回归方程是理想的.
【解析】试题分析:(1)从组数据中选取组数据共有种情况,每种情况都是等可能出现的,其中抽到相邻两个月的数据的情况有种,根据古典概型概率的求法求解;(2)求出至月份的数据的平均数,根据给出的公式求出相关系数,即可得到回归直线方程.
试题解析:(1)设抽到相邻两个月的数据为亊件,因为从组数据中选取组数据共有种情况,每种情况都是等可能出现的,其中抽到相邻两个月的数据的情况有种,所以.
(2)由数据求得, 由公式求得,再由,得关于的线性回归方程为.
【题目】学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
古文迷 | 非古文迷 | 合计 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据表中数据判断能否有的把握认为“古文迷”与性别有关?
(2)先从调查的女生中按分层抽样的方法抽出5人进行理科学习时间的调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(3)现从(2)中所抽取的5人中再随机抽取3人进行体育锻炼时间的调查,记这3人中“古文迷”的人数为,求随机变量的分布列与数学期望.
参考数据:
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
参考公式: ,其中.