题目内容

【题目】2017年被称为”新高考元年”,随着上海、浙江两地顺利实施“语数外+3”新高考方案,新一轮的高考改革还将继续在全国推进.辽宁地区也将于2020年开启新高考模式,今年秋季入学的高一新生将面临从物理、化学、生物、政治、历史、地理等6科中任选三科(共20种选法)作为自已将来高考“语数外+3”新高考方案中的“3”.某地区为了顺利迎接新高考改革,在某学校理科班的200名学生中进行了“学生模找拟选科数据”调查,每个学生只能从表格中的20种课程组合选择一种学习.模拟选课数据统计如下表 :

序号

1

2

3

4

5

6

7

组合学科

物化生

物化政

物化历

物化地

物生政

物生历

物生地

人数

20人

5人

10人

10人

10人

15人

10人

序号

8

9

10

11

12

13

14

组合学科

物证历

物政地

物历地

化生政

化生历

化生地

化政历

人数

5人

0人

5人

40人

序号

15

16

17

18

19

20

组合学科

化政地

化历地

生政历

生政地

生历地

政历地

总计

人数

200人

为了解学生成绩与学生模拟选课情况之间的关系,用分层抽样的方法从这200名学生中抽取40人的样本进行分析.

(1)从选择学习物理且学习化学的学生中随机抽取3人,求这3人中至少有2天要学习生物的概率;

(2)从选择学习物理且学习化学的学生中随机抽取3人,记这3人中要学习生物的人数为,要学习政治的人数为,设随机变量,求随机变量的分布列和数学期望.

【答案】(1);(2)答案见解析.

【解析】试题分析:(1)分别计算2人选生物和三人选生物的选法,由加法原理可得共34种,从而计算出其概率;(2)物化生组合有4人,的可能取值为0,1,2,3,物化政组合1人,的可能取值为0,1,的可能取值为-1,0,1,2,3.根据古典概型,分别求其概率即可得出分布列及期望.

试题解析:

(1)选择学习物理且学习化学的学生有9人,其中学习生物的有4人从9人中选3人共有种选法,有2人选择生物的选法共有种,有3人选择生物的选法有种,所以至少有2人选择生物的概率为.

(2)物化生组合有4人,的可能取值为0,1,2,3,物化政组合1人,的可能取值为0,1,的可能取值为-1,0,1,2,3.

的分布列

-1

0

1

2

3

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网