题目内容
(本小题12分)已知函数(1)求函数的单调区间和极值;(2)已知的图象与函数的图象关于直线对称,证明:当时,;(3)如果且,证明:
(1)增,减(2) (3)见解析
解析
(本小题满分14分)已知函数(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;(2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;(3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.
(本小题满分12分) 已知函数在点的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)设,求证:在上恒成立.
已知函数.(Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围;(Ⅱ)当时,试比较与1的大小;(Ⅲ)求证:.
(本小题14分)已知函数.(1)若,求曲线在处切线的斜率;(2)求的单调区间;(3)设,若对任意,均存在,使得,求的取值范围。
(本题满分15分)已知函数()(Ⅰ)讨论的单调性;(Ⅱ)当时,设,若存在,,使, 求实数的取值范围。为自然对数的底数,
已知函数,其中为正实数,2.7182……(1)当时,求在点处的切线方程。(2)是否存在非零实数,使恒成立。
已知函数在与时都取得极值.(1)求的值及函数的单调区间; (2)若对,不等式恒成立,求的取值范围.
(本小题满分13分)已知函数((1)若函数在定义域上为单调增函数,求的取值范围;(2)设