题目内容

17.将一颗骰子投掷两次得到的点数分别为a,b,则函数f(x)=ax3+bx2+x存在极值的概率为(  )
A.$\frac{1}{2}$B.$\frac{5}{9}$C.$\frac{7}{12}$D.$\frac{2}{3}$

分析 利用古典概型概率计算公式,先计算总的基本事件数,再根据要取得极值,导函数为0的方程恰有两个不同的解,利用判别式,即可求得结论.

解答 解:f(x)=ax3+bx2+x,
∴f′(x)=3ax2+2bx+1,
∵f(x)=ax3+bx2+x存在极值,
∴f′(x)=3ax2+2bx+1=0恰有两个不同的解,
∴△=4b2-12a>0,即b2>3a
设一颗骰子投掷两次分别得到点数为(a,b),则这样的有序整数对共有6×6=36个,
其中b2>3a的有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,4),(5,5),(5,6),(6,5),(6,6)共20个,
则函数f(x)=ax3+bx2+x存在极值的概率为$\frac{20}{36}$=$\frac{5}{9}$.
故选:B.

点评 本题考查了古典概型概率的计算方法,导数和极值的关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网