题目内容

精英家教网如图,已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过△ABC的中心G,设?MGA=a(
π
3
≤α≤
3

(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函数.
(2)求y=
1
S12
+
1
S22
的最大值与最小值.
分析:(1)根据G是边长为1的正三角形ABC的中心,可求得AG,进而利用正弦定理求得GM,然后利用三角形面积公式求得S1,同理可求得S2
(2)把(1)中求得S1与S2代入求得函数的解析式,进而根据α的范围和余切函数的单调性求得函数的最大和最小值.
解答:解:(1)因为G是边长为1的正三角形ABC的中心,
所以AG=
2
3
×
3
2
=
3
3

∠MAG=
π
6

由正弦定理
GM
sin
π
6
=
GA
sin(π-α-
π
6
)

GM=
3
6sin(α+
π
6
)

则S1=
1
2
GM•GA•sina=
sinα
12sin(α+
π
6
)

同理可求得S2=
sinα
12sin(α-
π
6
)


(2)y=
1
y
2
1
+
1
y
2
2
=
144
sin2α
〔sin2(α+
π
6
)+sin2(α-
π
6
)〕

=72(3+cot2a)
因为
π
3
≤α≤
3

所以当a=
π
3
或a=
3
时,y取得最大值ymax=240
当a=
π
2
时,y取得最小值ymin=216
点评:本题主要考查了解三角形问题.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网