题目内容
【题目】已知函数.
(1)证明:当时,;
(2)若函数只有一个零点,求正实数的值.
【答案】(1)证明见解析;(2).
【解析】
(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可
(2)直接求导可得,,令,得或,故根据0与的大小关系来进行分类讨论即可
证明:(1)令,则.
分析知,函数的增区间为,减区间为.
所以当时,.
所以,即,
所以.
所以当时,.
解:(2)因为,所以.
讨论:
①当时,,此时函数在区间上单调递减.
又,
故此时函数仅有一个零点为0;
②当时,令,得,故函数的增区间为,减区间为,.
又极大值,所以极小值.
当时,有.
又,此时,
故当时,函数还有一个零点,不符合题意;
③当时,令得,故函数的增区间为,减区间为,.
又极小值,所以极大值.
若,则,得,
所以
,
所以当且时,,故此时函数还有一个零点,不符合题意.
综上,所求实数的值为.
【题目】某县共有户籍人口60万,经统计,该县60岁及以上、百岁以下的人口占比,百岁及以上老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:
年龄段(岁) | ||||
人数(人) | 125 | 75 | 25 | 5 |
(1)从样本中70岁及以上老人中,采用分层抽样的方法抽取21人,进一步了解他们的生活状况,则80岁及以上老人应抽多少人?
(2)从(1)中所抽取的80岁及以上老人中,再随机抽取2人,求抽到90岁及以上老人的概率;
(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款:
①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;
②本县户籍80岁及以上老年人额外享受高龄老人生活补贴;
(a)百岁及以上老年人,每人每月发放345元的生活补贴;
(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴;
(c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴.
试估计政府执行此项补贴措施的年度预算.