题目内容
选修4-1:几何证明选讲如图,在Rt⊿ABC中,AB=BC,以AB为直径的⊙O
交AC于D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:CE2=EFEA.
证明:在Rt⊿ABC中,∠ABC=900,
∴OB⊥CB,∴CB为⊙O的切线,
∴EB2=EF﹒EA连接BD,因为AD是⊙O的直径,
∴BD⊥AC,又因为AB=BC,所以AD=BD=DC,
∵DE⊥BC,所以BE="CE, " 所以CE2=EF﹒EA
解析
练习册系列答案
相关题目
A.选修4-1:几何证明选讲
|
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.求证:(1)l是⊙O的切线;(2)PB平分∠ABD.
B.选修4-2:矩阵与变换
(本小题满分10分)
已知点A在变换:T:→=作用后,再绕原点逆时针旋转90°,得到点B.若点B坐标为(-3,4),求点A的坐标.
C.选修4-4:坐标系与参数方程
(本小题满分10分)
求曲线C1:被直线l:y=x-所截得的线段长.
D.选修4-5:不等式选讲
(本小题满分10分)
已知a、b、c是正实数,求证:≥.