搜索
题目内容
若A为不等式组
表示的平面区域,则当实数a从-2连续变化到0时,动直线x+y=a扫过A中部分的区域的面积为( )
A.
B.
C.2
D.1
试题答案
相关练习册答案
D
A区域为(-2,0),(0,0),(0,2)形成的直角三角形,其面积为2,则直线x+y=a从(-2,0)开始扫过,扫到区域一半时停止,所以扫过A中部分的区域的面积为1.
练习册系列答案
优品新课堂系列答案
优化学习中考定位卷系列答案
优加金卷标准大考卷系列答案
优化同步练习系列答案
赢在中考全程优化单元滚动测试卷系列答案
赢在中考广东经济出版社系列答案
迎战新考场系列答案
语文同步解析与测评系列答案
语文同步练习册系列答案
语文同步练习系列答案
相关题目
在平面直角坐标系上,设不等式组
所表示的平面区域为
,记
内的整点(即横坐标和纵坐标均为整数的点)的个数为
. 则
=
,经推理可得到
=
.
若实数
, 则目标函数
的最大值是
.
若不等式Ax+By+5<0表示的平面区域不包括点(2,4),且k=A+2B,则k的取值范围是( )
A.k≥-
B.k≤-
C.k>-
D.k<-
实数x,y满足
则z=2x+y的最小值为( )
A.-2
B.2
C.3
D.4
设实数x,y满足约束条件
,若目标函数
(
)的最大值为8,则
的最小值为
.
某公司生产甲,乙两种桶装产品,已知生产甲产品1桶需耗A原料1千克,B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲,乙两种产品中,公司可获得的最大利润是( )
A.2200元
B.2400元
C.2600元
D.2800元
设
满足约束条件
若目标函数
的最大值为
则
的最小值为______________ .
在平面直角坐标系
中,已知集合
所表示的图形的面积为
,若集合
,则
所表示的图形面积为 ( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总