题目内容
【题目】为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
分组 | 频数 | 频率 |
5 | ||
35 | ||
25 | ||
15 | ||
合计 | 100 |
(Ⅰ)求的值及随机抽取一考生恰为优秀生的概率;
(Ⅱ)按成绩采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(Ⅲ)在第(Ⅱ)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在的概率.
【答案】(Ⅰ),;(Ⅱ)人;(Ⅲ).
【解析】
试题分析:(Ⅰ)由频率分布表可得;(Ⅱ)分层抽样抽取人时,优秀生应抽取人;(Ⅲ)从人中选个人,结果共有种,其中至少有一人成绩在的情况有种,则所求概率为.
试题解析:(Ⅰ),
由频率分布表可得所求的概率为.
(Ⅱ)按成绩分层抽样抽取20人时,优秀生应抽取8人.
(Ⅲ)8人中,5人成绩在,3人成绩在,从8个人中选2个人,结果共有28种,其中至少有一人成绩在的情况有两种:可能有1人成绩在,也可能有2人成绩在,所以共有种,∴.
【题目】为迎接春节,某工厂大批生产小孩具—— 拼图,工厂为了规定工时定额,需要确定加工拼图所花费的时间,为此进行了10次试验,测得的数据如下:
拼图数 /个 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
加工时间 /分钟 | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 |
(1)画出散点图,并判断与是否具有线性相关关系;
(2)求回归方程;
(3)根据求出的回归方程,预测加工2010个拼图需要用多少小时?(精确到0.1)
附:回归直线的斜率和截距的最小二乘估计公式分别为:
, .
参考数据 | 合计 | ||||||||||
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 550 | |
62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 | 917 | |
100 | 400 | 900 | 1600 | 2500 | 3600 | 4900 | 6400 | 8100 | 10000 | 38500 | |
620 | 1360 | 2250 | 3240 | 4450 | 5700 | 7140 | 8840 | 10350 | 12200 | 55950 |