题目内容
设
,
是给定的两个正整数.证明:有无穷多个正整数
,使得
与
互素.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025341193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025357181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025513364.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025528320.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025357181.gif)
证法一:对任意正整数
,令
.我们证明
.
设
是
的任一素因子,只要证明:
.
若
,则由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025669666.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025700634.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025716300.gif)
.
及
,且
,知
且
.从而
.
证法二:对任意正整数
,令
,我们证明
.
设
是
的任一素因子,只要证明:
.
若
,则由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025669666.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025965649.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025716300.gif)
.
即
不整除上式,故
.
若
,设
使
,但
.
.故由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141026215676.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025965649.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025716300.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025731546.gif)
及
,且
,知
且
.从而
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025560181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025575493.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025591436.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025622200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025357181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025653390.gif)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025669388.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025669666.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025700634.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025716300.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025731546.gif)
及
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025747377.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025762425.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025778432.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025809473.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025653390.gif)
证法二:对任意正整数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025560181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025856509.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025591436.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025622200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025357181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025653390.gif)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025669388.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025669666.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025965649.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025716300.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025996512.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025622200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025653390.gif)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141026043366.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141026059235.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025747377.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025762425.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141026168445.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141026215676.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025965649.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025716300.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025731546.gif)
及
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025747377.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025762425.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025778432.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025809473.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141025653390.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目