题目内容

(本小题12分)已知,直线与函数的图象都相切,且与函数的图象的切点的横坐标为.

(Ⅰ)求直线的方程及的值;

(Ⅱ)若(其中的导函数),求函数的最大值;

(Ⅲ)当时,求证:.

 

 

【答案】

(1)(2)2(3)略

【解析】(Ⅰ).∴直线的斜率为,且与函数的图象的切点坐标为.   ∴直线的方程为. 又∵直线与函数的图象相切,

∴方程组有一解.  由上述方程消去,并整理得

         ①

依题意,方程①有两个相等的实数根,

解之,得       .

(Ⅱ)由(Ⅰ)可知

 .  .

∴当时,,当时,.

∴当时,取最大值,其最大值为2.

(Ⅲ) .

 , .

由(Ⅱ)知当时,   ∴当时,

.      ∴

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网