题目内容
已知椭圆的离心率
,左、右焦点分别为
,定点P
,点
在线段
的中垂线上.
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于M、N两点,直线
的倾斜角分别为
,求证:直线
过定点,并求该定点的坐标.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211719931516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720025441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720040634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720056353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720087396.png)
(1)求椭圆C的方程;
(2)设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720103658.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720118707.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720134710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720149280.png)
⑴由椭圆C的离心率
得
,其中
,
椭圆C的左、右焦点分别为
又点
在线段
的中垂线上
∴
,∴
解得c=1,a2=2,b2=1,
∴椭圆的方程为
.
⑵由题意,知直线MN存在斜率,设其方程为y=kx+m
由
消去y,得(
)
+4kmx+
=0.
设M(
),N(
),则
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720461881.png)
且
,
由已知α+β=π,得
,即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720524971.png)
化简,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232117205391085.png)
∴
。整理得m=-2k.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720181492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720196548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720227553.png)
椭圆C的左、右焦点分别为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720243697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720056353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720087396.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720290571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720305778.png)
∴椭圆的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720321626.png)
⑵由题意,知直线MN存在斜率,设其方程为y=kx+m
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232117203371042.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720368489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720383338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720399511.png)
设M(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720415445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720415482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720430890.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720461881.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720477909.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720493884.png)
由已知α+β=π,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720508747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211720524971.png)
化简,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232117205391085.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232117205551387.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目