题目内容

 

如图,在直三棱柱中,MN分别是ACBB1的中点。

(1)求二面角的大小。

(2)证明:在AB上存在一个点Q,使得平面⊥平面,并求出的长度。

 

 

 

 

 

 

 

 

【答案】

 解:方法一(向量法)

如图建立空间直角坐标系……………………1分

(1)

   设平面的法向量为,平面的法向量为

   则有…………3分

       …………5分

  设二面角θ,则

 

  ∴二面角的大小为60°。…………7分

(2)设………………9分

    ∵

    ∴,设平面的法向量为

    则有:…………11分

   由(1)可知平面的法向量为

   ∵平面⊥平面

   ∴  即

   此时。………………14分

方法二:(1)取中点,连接

  ∴

  又∵  ∴

  ∴  ∴

  过H,连接

  ∴  ∴

   ∴为二面角的平面角………………4分

   有: 

   ∵

   ∴

   ∴

   ∴…………………………7分

(2)同方法一

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网