题目内容

11.如图,平面直角坐标系xOy中,∠ABC=$\frac{π}{3}$∠ADC=$\frac{π}{6}$,AC=$\sqrt{7}$,△BCD的面积为$\sqrt{3}$.
(Ⅰ)求AB的长;
(Ⅱ)若函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<$\frac{π}{2}$)的图象经过A,B,C三点,其中A,B为f(x)的图象与x轴相邻的两个交点,求函数f(x)的解析式.

分析 (Ⅰ)由已知可得S△BCD=$\frac{\sqrt{3}}{4}$BC2=$\sqrt{3}$,解得BC,由余弦定理即可解得AB的长.
(Ⅱ)由(Ⅰ)知,A(2,0),B(-1,0),C(0,$\sqrt{3}$),又函数f(x)的半个周期$\frac{T}{2}$=3,对称轴为x=$\frac{1}{2}$,由周期公式可求T,ω,由$\frac{1}{2}×\frac{π}{3}+$φ=$\frac{π}{2}+kπ$,k∈Z,可求φ,又∵f(0)=Msin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}M$=$\sqrt{3}$,即可求得M,从而可求函数f(x)的解析式.

解答 本题满分(13分).
解:(Ⅰ)∵∠ABC=$\frac{π}{3}$,∠ADC=$\frac{π}{6}$,∴∠BCD=$\frac{π}{6}$,∠CBD=$\frac{2π}{3}$,BC=BD(1分)
又∵△BCD的面积为$\sqrt{3}$,
∴S△BCD=$\frac{1}{2}•BD•BC•sin\frac{2π}{3}$=$\frac{\sqrt{3}}{4}$BC2=$\sqrt{3}$,(2分)
∴BC=2.(3分)
在△ABC中,AC=$\sqrt{7}$,$∠ABC=\frac{π}{3}$,
由余弦定理得:AC2=AB2+BC2-2AB•BC•cos$\frac{π}{3}$,(4分)
即7=AB2+4-2×$2×\frac{1}{2}$×AB,整理得AB2-2AB-3=0,
∴AB=3,或AB=-1(舍去),∴AB的长为3.(6分)
(Ⅱ)由(Ⅰ)知,A(2,0),B(-1,0),C(0,$\sqrt{3}$),(7分)
∵函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<$\frac{π}{2}$)的图象经过A,B,C三点,其中A,B为f(x)的图象与x轴相邻的两个交点,
∴函数f(x)的半个周期$\frac{T}{2}$=3,对称轴为x=$\frac{1}{2}$,(9分)
∴T=6=$\frac{2π}{|ω|}$,
∵ω>0,∴ω=$\frac{π}{3}$,(10分)
∴$\frac{1}{2}×\frac{π}{3}+$φ=$\frac{π}{2}+kπ$,k∈Z,∴φ=$\frac{π}{3}+kπ$,k∈Z,
又∵|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{3}$,(11分)
∴f(x)=Msin($\frac{π}{3}x+\frac{π}{3}$),
又∵f(0)=Msin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}M$=$\sqrt{3}$,∴M=2,(12分)
∴函数f(x)的解析式是f(x)=2sin($\frac{π}{3}x+\frac{π}{3}$).(13分)

点评 本题考查解三角形和三角函数图象及性质等知识,考查学生运算求解能力、数据处理能力及推理论证能力,考查学生数形结合思想、函数与方程思想及转化与化归思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网