题目内容

曲线处的切线平行于直线,则的坐标为(   )

A.( 1 , 0 ) B.( 2 , 8 ) C.( 1 , 0 )或(-1, -4) D.( 2 , 8 )和或(-1, -4)

C

解析试题分析:设P0点的坐标为(a,f(a)),
由f(x)=x3+x-2,得到f′(x)=3x2+1,
由曲线在P0点处的切线平行于直线y=4x,得到切线方程的斜率为4,
即f′(a)=3a2+1=4,解得a=1或a=-1,
当a=1时,f(1)=0;当a=-1时,f(-1)=-4,
则P0点的坐标为(1,0)或(-1,-4),故选C.
考点:本题主要考查了利用导数研究曲线上某点切线方程,以及导数的几何意义,即函数在某点的导数值等于以该点为切点的切线的斜率,属于基础题.
点评:解决该试题的关键是利用导数研究曲线上某点切线方程,主要是明确两点:切点是谁,过该点的切线的斜率。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网