题目内容
【题目】已知f(α)=cosα
(Ⅰ)当α为第二象限角时,化简f(α);
(Ⅱ)当α∈( ,π)时,求f(α)的最大值.
【答案】解:(Ⅰ)当α为第二象限角时,sinα>0,cosα<0,
f(α)=cosα +sinα
=cosα +sinα
=cosα +sin
=sinα﹣1+1﹣cosα
= sin( )
(Ⅱ)当α∈( ,π)时,由(Ⅰ)可得f(α)= sin( )
那么: ,
则sin( )∈( ,1]
∴f(α)的最大值为
【解析】(Ⅰ)根据当α为第二象限角时,sinα>0,cosα<0,即可化简.(Ⅱ)当α∈( ,π)时,求出f(α)内层函数的范围,利用三角函数的性质求解其最大值.
【考点精析】本题主要考查了三角函数的最值的相关知识点,需要掌握函数,当时,取得最小值为;当时,取得最大值为,则,,才能正确解答此题.
练习册系列答案
相关题目
【题目】已知f(x)= sin2x+sinxcosx﹣ .
(1)求f(x)的单调增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若A为锐角且f(A)= ,b+c=4,求a的取值范围.
【题目】某公司在2012﹣2016年的收入与支出情况如表所示:
收入x(亿元) | 2.2 | 2.6 | 4.0 | 5.3 | 5.9 |
支出y(亿元) | 0.2 | 1.5 | 2.0 | 2.5 | 3.8 |
根据表中数据可得回归直线方程为 =0.8x+ ,依次估计如果2017年该公司收入为7亿元时的支出为( )
A.4.5亿元
B.4.4亿元
C.4.3亿元
D.4.2亿元