题目内容
设正实数x,y,z满足x2-3xy+4y2-z=0,则当
取得最大值时,x+2y-z的最大值为( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040631519448.png)
A.0 | B.![]() | C.2 | D.![]() |
C
由题得z+3xy=x2+4y2≥4xy(x,y,z>0),
即z≥xy,
≥1.当且仅当x=2y时等号成立,
则x+2y-z=2y+2y-(4y2-6y2+4y2)
=4y-2y2=-2(y2-2y)
=-2[(y-1)2-1]=-2(y-1)2+2.
当y=1时,x+2y-z有最大值2.故选C.
即z≥xy,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040631519448.png)
则x+2y-z=2y+2y-(4y2-6y2+4y2)
=4y-2y2=-2(y2-2y)
=-2[(y-1)2-1]=-2(y-1)2+2.
当y=1时,x+2y-z有最大值2.故选C.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目