题目内容
【题目】在中,分别为内角所对的边,且满足,
(I)求C的大小;
(II)现给出三个条件:①;②;③.试从中选择两个可以确定的条件,写出你的选择并以此为依据求的面积S.(只写出一种情况即可)
【答案】(Ⅰ)(Ⅱ)详见解析
【解析】
(Ⅰ)由两角和的正弦函数公式化简已知等式可得,结合角C范围可得C值.(Ⅱ)方案一:选条件①和③,由余弦定理可求b,a的值,根据三角形面积公式即可计算得解;方案二:选条件②和③,由正弦定理得,根据两角和的正弦公式可求sinA值,根据三角形面积公式即可计算得解.若选条件①和②,可得sinA>1,这样的三角形不存在.
解:(Ⅰ)依题意得:,
即,
∵,∴,
∴,∴;
(Ⅱ)方案一:选条件①和③,
由余弦定理,有,
则,,
所以.
方案二:选条件②和③,
由正弦定理,得,
∵,
∴,
∴.
【题目】随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分(满分10分),现将评分分为5组,如下表:
组别 | 一 | 二 | 三 | 四 | 五 |
满意度评分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
频数 | 5 | 10 | a | 32 | 16 |
频率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估计用户的满意度评分的平均数;
(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?
【题目】为了解华师一附中学生喜欢吃辣是否与性别有关,调研部(共10人)分三组对高中三个年级的学生进行调查,每个年级至少派3个人进行调查.(1)求调研部的甲、乙两人都被派到高一年级进行调查的概率.(2)调研部对三个年级共100人进行了调查,得到如下的列联表,请将列联表补充完整,并判断是否有以上的把握认为喜欢吃辣与性别有关?
喜欢吃辣 | 不喜欢吃辣 | 合计 | |
男生 | 10 | ||
女生 | 20 | 30 | |
合计 | 100 |
参考数据:
参考公式:,其中.
【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的频率分布直方图,在这100人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:
(1)由频率分布直方图,估计这100人年龄的平均数;
(2)根据以上统计数据填写下面的22列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
45岁以下 | 45岁以上 | 总计 | |
不支持 | |||
支持 | |||
总计 |
参考数据:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |