题目内容
【题目】定义在R上的奇函数f(x),对于x∈R,都有 ,且满足f(4)>﹣2, ,则实数m的取值范围是 .
【答案】{mm<﹣1,或0<m<3}
【解析】解:∵ ; 用 代换x得: ;
用 代换x得: ;
即f(x)=f(x+3);
∴函数f(x)是以3为周期的周期函数;
∴f(4)=f(1)>﹣2,f(2)=﹣f(﹣2)=﹣f(﹣2+3)=﹣f(1)<2;
∴ ;
解得m<﹣1,或0<m<3;
∴实数m的取值范围为{m|m<﹣1,或0<m<3}.
所以答案是:{m|m<﹣1,或0<m<3}.
【考点精析】关于本题考查的函数奇偶性的性质,需要了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能得出正确答案.
练习册系列答案
相关题目
【题目】某百货公司1~6月份的销售量x与利润y的统计数据如表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售量x(万件) | 10 | 11 | 13 | 12 | 8 | 6 |
利润y(万元) | 22 | 25 | 29 | 26 | 16 | 12 |
(参考公式: = )= , .
(1)根据2~5月份的统计数据,求出y关于x的回归直线方程 ;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?