题目内容
例
(2005高考福建卷)已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为. (Ⅰ)求函数的解析式;
解析:
【思维分析】利用导数的几何意义解答。
解析:(Ⅰ)由的图象经过P(0,2),知d=2,所以
由在处的切线方程是,知
故所求的解析式是
【知识点归类点拔】导数的几何意义:函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步: (1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为 特别地,如果曲线y=f(x)在点处的切线平行于y轴,这时导数不存,根据切线定义,可得切线方程为。利用导数的几何意义作为解题工具,有可能出现在解析几何综合试题中,复习时要注意到这一点.
练习册系列答案
相关题目
(2009年高考福建卷)一个容量为100的样本,其数据的分组与各组的频数如下:
组别 |
(0,10] |
(10,20] |
(20,30] |
(30,40] |
(40,50] |
(50,60] |
(60,70] |
频数 |
12 |
13 |
24 |
15 |
16 |
13 |
7 |
则样本数据落在(10,40]上的频率为( )
A.0.13 B.0.39
C.0.52 D.0.64