题目内容
()(2005高考湖南卷)设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.(Ⅰ)用表示a,b,c;
故,,
运用导数的几何意义进行分析求解
【练】
(1)(2005高考北京卷)已知函数f(x)=-x3+3x2+9x+a, (I)求f(x)的单调递减区间;(II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.答案:(1)(-∞,-1),(3,+∞)(2)-7
例
(2005高考福建卷)已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为. (Ⅰ)求函数的解析式;
(2012年高考湖南卷理科5)已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为
A.-=1 B.-=1 C.-=1 D.-=1
(2010年高考湖南卷)在区间[-1,2]上随机取一个数x,则|x|≤1的概率为________.