题目内容
(12分) 如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1) FD∥平面ABC; (2) AF⊥平面EDB.
∵ F、M分别是BE、BA的中点 ∴ FM∥EA, FM=EA
∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM
又 DC="a, " ∴ FM="DC " ∴四边形FMCD是平行四边形
∴ FD∥MC
FD∥平面ABC
(2) 因M是AB的中点,△ABC是正三角形,所以CM⊥AB
又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,
因F是BE的中点, EA=AB所以AF⊥EB.
∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM
又 DC="a, " ∴ FM="DC " ∴四边形FMCD是平行四边形
∴ FD∥MC
FD∥平面ABC
(2) 因M是AB的中点,△ABC是正三角形,所以CM⊥AB
又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,
因F是BE的中点, EA=AB所以AF⊥EB.
略
练习册系列答案
相关题目