题目内容
【题目】已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.
【答案】(1)证明见解析;(2) [0,+∞);(3)4,x-2y+4=0.,
【解析】
(1)将直线的方程整理为斜截式的形式后,可知其过定点;(2)若直线不经过第四象限,则其斜率与其在轴上的截距均非负,此时可列出关于的不等式组,从而求得的取值范围;(3)根据直线的方程可求出点与的坐标,进而用含的式子表示出的面积,利用均值不等式可求出的面积最小时的值,从而得到的面积的最小值与此时直线的方程.
(1)证明:直线l的方程可化为k(x+2)+(1-y)=0,
令 解得 ,
∴无论k取何值,直线总经过定点(-2,1).
(2)由方程知,当k≠0时直线在x轴上的截距为- ,在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有 解得k>0;
当k=0时,直线为y=1,符合题意,故k的取值范围是[0,+∞).
(3)由题意可知k≠0,再由l的方程,
得A ,B(0,1+2k).
依题意得解得k>0.
∵S= ·|OA|·|OB|=·|1+2k|
=·=
≥×(2×2+4)=4,
“=”成立的条件是k>0且4k= ,
即k=,∴Smin=4,
此时直线l的方程为x-2y+4=0.
【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.
【题目】为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的频率 |
第组 | |||
第组 | |||
第组 | |||
第组 | |||
第组 |
(1)分别求出的值;
(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;
(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率