题目内容
9.设全集U=R,A={x|x≤2,x∈R},B={1,2,3,4},则B∩∁UA=( )A. | {4} | B. | {3,4} | C. | {2,3,4} | D. | {1,2,3,4} |
分析 根据全集U及A,求出A的补集,找出B与A补集的交集即可.
解答 解:∵全集U=R,A={x|x≤2,x∈R},B={1,2,3,4},
∴∁UA={x|x>2,x∈R},
则B∩∁UA={3,4},
故选:B.
点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
20.若函数f(x)=$\frac{{{2^x}+a}}{{{2^x}+1}}$为奇函数,g(x)=$\left\{\begin{array}{l}alnx,x>0\\{e^{ax}},x≤0\end{array}$,则不等式g(x)>1的解集为( )
A. | (-∞,e-1) | B. | (-∞,0)∪(0,e) | C. | (e,+∞) | D. | (-∞,0)∪(0,e-1) |
4.已知函数f(x)=ln(1+x)-ln(1-x).
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求证:当x∈(0,1)时,$f(x)>2({x+\frac{x^3}{3}})$.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求证:当x∈(0,1)时,$f(x)>2({x+\frac{x^3}{3}})$.
14.已知f(x)的值域为[$\frac{3}{8}$,$\frac{4}{9}$],则函数y=f(x)+$\sqrt{1-2f(x)}$的值域为( )
A. | [$\frac{7}{9}$,$\frac{5}{4}$] | B. | [$\frac{5}{9}$,$\frac{3}{4}$] | C. | [$\frac{7}{9}$,$\frac{7}{8}$] | D. | [$\frac{8}{9}$,$\frac{5}{4}$] |