题目内容

四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.
(1)参考解析;(2)

试题分析:(1)由已知可得直线AE垂直于BC,即可得到AE垂直于AD,又因为PA垂直于AE.所以可得AE垂直于平面PAD.即可得平面要证平面⊥平面.
(2)通过点E作EG垂直于AF,EQ垂直于AC,连结QG即可证得为所求的二面角的平面角.由与平面所成的最大角为.可得AE=AH.即可得EQ,QG的大小.从求得的正切值,即二面角 的正切值.
(1)设菱形ABCD的边长为2a,则AE=
,∴AE⊥BC,又AD||BC, ∴AE⊥AD.∵PA⊥面ABCD, ∴PA⊥AE,AE⊥面PAD, ∴面AEF⊥面PAD.
(2)过E作EQ⊥AC,垂足为Q,过作QG⊥AF,垂足为G,连GE,∵PA⊥面ABCD,∴PA⊥EQ,EQ⊥面PAC,则∠EGQ是二面角E-AF-C的平面角.
过点A作AH⊥PD,连接EH,∵ AE⊥面PAD,∴∠AHE是EH与面PAD所成的最大角.
∵∠AHE=,∴AH=AE=,AH﹒PD=PA﹒AD,2a﹒PA=,PA=2,PC=4a,EQ=,CQ=,GQ=,tan∠EGQ=.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网