题目内容

4.设数列满足a1=3,(2-an)•an+1=1,则数列{an}的通项公式是an=$\frac{2n-5}{2n-3}$.

分析 通过写出前几项猜测通项公式,然后利用数学归纳法证明即可.

解答 解:∵a1=3,(2-an)•an+1=1,
∴an+1=$\frac{1}{2-{a}_{n}}$,
∴a2=$\frac{1}{2-3}$=-1,a3=$\frac{1}{2-(-1)}$=$\frac{1}{3}$,a4=$\frac{1}{2-\frac{1}{3}}$=$\frac{3}{5}$,

猜想:数列{an}的通项公式an=$\frac{2n-5}{2n-3}$.
下面用数学归纳法证明:
当n=1时,显然成立;
假设当n=k时,有ak=$\frac{2k-5}{2k-3}$,
∵(2-an)•an+1=1,
∴ak+1=$\frac{1}{2-{a}_{k}}$=$\frac{1}{2-\frac{2k-5}{2k-3}}$=$\frac{1}{\frac{2k-1}{2k-3}}$=$\frac{2k-3}{2k-1}$=$\frac{2(k+1)-5}{2(k+1)-3}$,
即当n=k+1时也成立,
故数列{an}的通项公式an=$\frac{2n-5}{2n-3}$.

点评 本题考查求数列的通项,考查数学归纳法,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网