题目内容
12.已知曲线C的方程为x2+2x+y-1=0,则下列各点中在曲线C上的点是( )A. | (0,1) | B. | (-1,3) | C. | (1,1) | D. | (-1,1) |
分析 将选项代入验证,即可得出结论.
解答 解:将选项代入验证,可得(0,1)满足x2+2x+y-1=0,
故选:A.
点评 本题考查曲线与方程,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
2.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
(1)求利润额y对销售额x的回归直线方程;
(2)当销售额为4(千万元)时,估计利润额的大小.
提示:$\stackrel{∧}{b}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n\overline{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
商店名称 | A | B | C | D | E |
销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
利润额y(千万元) | 2 | 3 | 3 | 4 | 5 |
(2)当销售额为4(千万元)时,估计利润额的大小.
提示:$\stackrel{∧}{b}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n\overline{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
3.如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则( )
A. | $\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{0}$ | B. | $\overrightarrow{BD}-\overrightarrow{CF}+\overrightarrow{DF}=\overrightarrow{0}$ | C. | $\overrightarrow{AD}+\overrightarrow{CE}-\overrightarrow{CF}=\overrightarrow{0}$ | D. | $\overrightarrow{BD}-\overrightarrow{BE}-\overrightarrow{FC}=\overrightarrow{0}$ |
20.已知函数f(x)=$\sqrt{{x}^{2}-1}$.若f(a)=2$\sqrt{2}$,则实数a=( )
A. | $\sqrt{3}$ | B. | -3 | C. | 3或-3 | D. | $\sqrt{3}$或-$\sqrt{3}$ |
4.已知(2x+$\frac{a}{x}$)5的展开式中各项系数之和为1,则该展开式中含$\frac{1}{{x}^{3}}$项系数为( )
A. | -20 | B. | 20 | C. | -10 | D. | 10 |
2.按流程图的程序计算,若开始输入的值为x=3,则输出的x的值是输入x计算的值输出结果x是否( )
A. | 6 | B. | 21 | C. | 156 | D. | 231 |