题目内容
2.已知命题p:“?x>0,ex≥1”,则¬p为( )A. | ?x≤0,使得ex≤1 | B. | ?x≤0,使得ex<1 | C. | ?x>0,使得ex<1 | D. | ?x>0,使得ex≤1 |
分析 根据全称命题 的否定为特称命题可写出命题p的否定.
解答 解:根据全称命题P:?x>0,ex≥1的否定为特称命题,
即:¬p为?x>0,ex<1.
故选:C.
点评 本题主要考查了全称命题的否定的写法,对量词及结论都要进行否定.
练习册系列答案
相关题目
12.C是曲线y=$\sqrt{1-{x^2}}$(x≤0)上点,CD⊥y轴,D是垂足,A点坐标是(-1,0),设∠CAO=θ(其中O为原点),将AC+CD表示成关于θ的函数f(θ),则f(θ)=( )
A. | 2cosθ-cos2θ | B. | cosθ+sinθ | C. | 2cosθ(1+cosθ) | D. | 2sinθ+cosθ-$\sqrt{2}$ |
13.计算$\frac{tan\frac{π}{8}}{{1-tan}^{2}\frac{π}{8}}$的结果是( )
A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
10.如图,a∈(0,π),且a≠$\frac{π}{2}$,当∠xOy=e时,定义平面坐标系xOy为a仿射坐标系,在α-仿射坐标系中,任意一点P的斜坐标这样定义:$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$分别为与x轴、y轴正向相同的单位向量,若$\overrightarrow{OP}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,则记为$\overrightarrow{OP}$=(x,y),若在仿射坐标系中,已知$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(s,t),下列结论中不正确的是( )
A. | 若$\overrightarrow{a}$=$\overrightarrow{b}$,则m=s,n=t | |
B. | 若$\overrightarrow{a}$$∥\overrightarrow{b}$,则mt-ns=0 | |
C. | 若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则ms+nt=0 | |
D. | 若m=t=1,n=s=2,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角$\frac{π}{3}$,则a=$\frac{2π}{3}$ |
17.已知ξ~N(3,σ2),若P(ξ≤2)=0.2,则P(ξ≤4)等于( )
A. | 0.2 | B. | P(-2≤ξ≤2)=0.4 | C. | P(ξ>2)=0.2 | D. | P(ξ≤4)=0.8 |
14.设函数g(x)=x2(x∈R),f(x)=$\left\{\begin{array}{l}{g(x)+1,x<g(x)}\\{g(x)-x,x≥g(x)}\end{array}\right.$,则函数f(x)的值域是( )
A. | [-$\frac{1}{4}$,+∞) | B. | [0,+∞) | C. | [$-\frac{1}{4}$,0]∪(2,+∞) | D. | [-$\frac{1}{4}$,0]∪(1,+∞) |