ÌâÄ¿ÄÚÈÝ
£¨2012•Ã¯Ãû¶þÄ££©ÒÑÖªÍÖÔ²
+
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¨-c£¬0£©¡¢F2£¨c£¬0£©£¬ÀëÐÄÂÊΪ
£¬ÍÖÔ²ÉϵĶ¯µãPµ½Ö±Ïßl£ºx=
µÄ×îС¾àÀëΪ2£¬ÑÓ³¤F2PÖÁQʹµÃ|
|=2a£¬Ï߶ÎF1QÉÏ´æÔÚÒìÓÚF1µÄµãTÂú×ã
•
=0£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÇóµãTµÄ¹ì¼£CµÄ·½³Ì£»
£¨3£©ÇóÖ¤£º¹ýÖ±Ïßl£ºx=
ÉÏÈÎÒâÒ»µã±Ø¿ÉÒÔ×÷Á½ÌõÖ±ÏßÓëTµÄ¹ì¼£CÏàÇУ¬²¢ÇÒ¹ýÁ½ÇеãµÄÖ±Ïß¾¹ý¶¨µã£®
x2 |
a2 |
y2 |
b2 |
1 |
2 |
a2 |
c |
F2Q |
PT |
TF1 |
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÇóµãTµÄ¹ì¼£CµÄ·½³Ì£»
£¨3£©ÇóÖ¤£º¹ýÖ±Ïßl£ºx=
a2 |
c |
·ÖÎö£º£¨1£©¸ù¾ÝÍÖÔ²ÀëÐÄÂÊΪ
£¬ÍÖÔ²ÉϵĶ¯µãPµ½Ö±Ïßl£ºx=
µÄ×îС¾àÀëΪ2£¬½¨Á¢·½³Ì×飬¼´¿ÉÇóµÃÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèµãTµÄ×ø±ê£¬·ÖÀàÌÖÂÛ£ºµ±P£¬TÖغÏʱ£¬µãT×ø±êΪ£¨2£¬0£©ºÍµã£¨-2£¬0£ºµ±P£¬T²»ÖغÏʱ£¬ÓÉ
•
=0£¬µÃ
¡Í
£¬ÓÉ|
|=2a¼°ÍÖÔ²µÄ¶¨Ò壬¿ÉµÃPTΪÏ߶ÎF1QµÄ´¹Ö±Æ½·ÖÏߣ¬TΪÏ߶ÎF1QµÄÖе㣬ÓÉ´Ë¿ÉÇóµãTµÄ¹ì¼£CµÄ·½³Ì£»
£¨3£©ÉèÁ½ÌõÇÐÏßΪME£¬MF£¬Ôò¿ÉµÃO£¬E£¬M£¬FËĵ㶼ÔÚÒÔOMΪֱ¾¶µÄÔ²ÉÏ£¬¿ÉÇóÔ²µÄ·½³Ì£¬½ø¶ø¿ÉµÃÁ½Ô²µÄ¹«¹²Ïҵķ½³Ì£¬¼´¿ÉµÃµ½½áÂÛ£®
1 |
2 |
a2 |
c |
£¨2£©ÉèµãTµÄ×ø±ê£¬·ÖÀàÌÖÂÛ£ºµ±P£¬TÖغÏʱ£¬µãT×ø±êΪ£¨2£¬0£©ºÍµã£¨-2£¬0£ºµ±P£¬T²»ÖغÏʱ£¬ÓÉ
PT |
TF1 |
PT |
TF1 |
F2Q |
£¨3£©ÉèÁ½ÌõÇÐÏßΪME£¬MF£¬Ôò¿ÉµÃO£¬E£¬M£¬FËĵ㶼ÔÚÒÔOMΪֱ¾¶µÄÔ²ÉÏ£¬¿ÉÇóÔ²µÄ·½³Ì£¬½ø¶ø¿ÉµÃÁ½Ô²µÄ¹«¹²Ïҵķ½³Ì£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º£¨1£©½â£ºÒÀÌâÒ⣬¡ßÍÖÔ²ÀëÐÄÂÊΪ
£¬ÍÖÔ²ÉϵĶ¯µãPµ½Ö±Ïßl£ºx=
µÄ×îС¾àÀëΪ2£¬
¡à
£¬¡£¨2·Ö£©
¡à
£¬¡àb2=a2-c2=3 ¡£¨3·Ö£©
¡àÍÖÔ²µÄ·½³ÌΪ
+
=1 ¡£¨4·Ö£©
£¨2£©½â£ºÉèµãTµÄ×ø±êΪ£¨x£¬y£©£®
µ±P£¬TÖغÏʱ£¬µãT×ø±êΪ£¨2£¬0£©ºÍµã£¨-2£¬0£©£¬¡£¨5·Ö£©
µ±P£¬T²»ÖغÏʱ£¬ÓÉ
•
=0£¬µÃ
¡Í
£®¡£¨6·Ö£©
ÓÉ|
|=2a¼°ÍÖÔ²µÄ¶¨Ò壬|
|=|
|-|
|=2a-|
|=|
|£¬¡£¨7·Ö£©
ËùÒÔPTΪÏ߶ÎF1QµÄ´¹Ö±Æ½·ÖÏߣ¬TΪÏ߶ÎF1QµÄÖеã
ÔÚ¡÷QF1F2ÖУ¬
=
|
|=a=2£¬¡£¨8·Ö£©
ËùÒÔÓÐx2+y2=4£®
×ÛÉÏËùÊö£¬µãTµÄ¹ì¼£CµÄ·½³ÌÊÇx2+y2=4£®¡£¨9·Ö£©
£¨3£©Ö¤Ã÷£ºÖ±Ïßl£ºx=
Óëx2+y2=4ÏàÀ룬¹ýÖ±ÏßÉÏÈÎÒâÒ»µãM£¨4£¬t£©¿É×÷Ô²x2+y2=4¢ÛµÄÁ½ÌõÇÐÏßME£¬MF ¡£¨10·Ö£©
ËùÒÔOE¡ÍME£¬OF¡ÍMF£¬ËùÒÔO£¬E£¬M£¬FËĵ㶼ÔÚÒÔOMΪֱ¾¶µÄÔ²ÉÏ£¬¡£¨11·Ö£©
Æä·½³Ì(x-2)2+(y-
)2=4+(
)2¢Ü¡£¨12·Ö£©
EFΪÁ½Ô²µÄ¹«¹²ÏÒ£¬¢Û-¢ÜµÃ£ºEFµÄ·½³ÌΪ4x+ty-4=0 ¡£¨13·Ö£©
ÏÔÈ»ÎÞÂÛtΪºÎÖµ£¬Ö±ÏßEF¾¹ý¶¨µã£¨1£¬0£©£®¡£¨14·Ö£©
1 |
2 |
a2 |
c |
¡à
|
¡à
|
¡àÍÖÔ²µÄ·½³ÌΪ
x2 |
4 |
y2 |
3 |
£¨2£©½â£ºÉèµãTµÄ×ø±êΪ£¨x£¬y£©£®
µ±P£¬TÖغÏʱ£¬µãT×ø±êΪ£¨2£¬0£©ºÍµã£¨-2£¬0£©£¬¡£¨5·Ö£©
µ±P£¬T²»ÖغÏʱ£¬ÓÉ
PT |
TF1 |
PT |
TF1 |
ÓÉ|
F2Q |
PQ |
QF2 |
PF2 |
PF2 |
PF1 |
ËùÒÔPTΪÏ߶ÎF1QµÄ´¹Ö±Æ½·ÖÏߣ¬TΪÏ߶ÎF1QµÄÖеã
ÔÚ¡÷QF1F2ÖУ¬
OT |
1 |
2 |
F2Q |
ËùÒÔÓÐx2+y2=4£®
×ÛÉÏËùÊö£¬µãTµÄ¹ì¼£CµÄ·½³ÌÊÇx2+y2=4£®¡£¨9·Ö£©
£¨3£©Ö¤Ã÷£ºÖ±Ïßl£ºx=
a2 |
c |
ËùÒÔOE¡ÍME£¬OF¡ÍMF£¬ËùÒÔO£¬E£¬M£¬FËĵ㶼ÔÚÒÔOMΪֱ¾¶µÄÔ²ÉÏ£¬¡£¨11·Ö£©
Æä·½³Ì(x-2)2+(y-
t |
2 |
t |
2 |
EFΪÁ½Ô²µÄ¹«¹²ÏÒ£¬¢Û-¢ÜµÃ£ºEFµÄ·½³ÌΪ4x+ty-4=0 ¡£¨13·Ö£©
ÏÔÈ»ÎÞÂÛtΪºÎÖµ£¬Ö±ÏßEF¾¹ý¶¨µã£¨1£¬0£©£®¡£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éƽÃæÏòÁ¿ÖªÊ¶£¬¿¼²éÔ²µÄ·½³Ì£¬¿¼²éÔËËãÇó½âÄÜÁ¦¼°´´ÐÂÒâʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿