题目内容
【题目】给定方程: ,则下列命题中:
①该方程没有小于0的实数解;
②该方程有无数个实数解;
③该方程在(-∞,0)内有且只有一个实数解;
④若x0是该方程的实数解,则x0>-1.
正确的命题是________.
【答案】②③④
【解析】试题分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,
分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.
解:对于①,若α是方程()x+sinx﹣1=0的一个解,
则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,
此时α<0,因此该方程存在小于0的实数解,得①不正确;
对于②,原方程等价于()x﹣1=﹣sinx,
当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1
且用无穷多个x满足﹣sinx=﹣1,
因此函数y=()x﹣1与y=﹣sinx的图象在[0,+∞)上有无穷多个交点
因此方程()x+sinx﹣1=0有无数个实数解,故②正确;
对于③,当x<0时,
由于x≤﹣1时()x﹣1≥1,函数y=()x﹣1与y=﹣sinx的图象不可能有交点
当﹣1<x<0时,存在唯一的x满足()x=1﹣sinx,
因此该方程在(﹣∞,0)内有且只有一个实数解,得③正确;
对于④,由上面的分析知,
当x≤﹣1时()x﹣1≥1,而﹣sinx≤1且x=﹣1不是方程的解
∴函数y=()x﹣1与y=﹣sinx的图象在(﹣∞,﹣1]上不可能有交点
因此只要x0是该方程的实数解,则x0>﹣1.
故答案为:②③④
练习册系列答案
相关题目