题目内容
已知函数,.
(Ⅰ)若函数在上至少有一个零点,求的取值范围;
(Ⅱ)若函数在上的最大值为,求的值.
(Ⅰ) ;(Ⅱ)或.
解析试题分析:(Ⅰ)根据方程的根与函数的零点的关系,将问题转化为函数对应的方程有至少一个根,那么由判别式与根的个数的关系可知,只要判别式大于或等于0即可,列不等式求解;(Ⅱ)先求出二次函数的对称轴,看看所给的闭区间与对称轴的关系,分和两种情况进行讨论:当时,左半区间在对称轴的左边,最大值是;当时,右半区间在对称轴的右边,最大值是.然后结合最大值是3来求解.
试题解析:(Ⅰ)依题意,函数在上至少有一个零点
即方程至少有一个实数根. 2分
所以,
解得. 5分
(Ⅱ)函数图象的对称轴方程是.
①当,即时,.
解得或.又,
所以. 9分
② 当,即时,
解得.又,
所以. 13分
综上,或. 14分
考点:1.方程的根与函数的零点的关系;2.二次函数的图像与性质;3.二次函数在闭区间上的最值;4.解不等式
练习册系列答案
相关题目