题目内容
(本小题15分)已知函数
.
(1)当
时,求
的单调递增区间;
(2)是否存在
,使得对任意的
,都有
恒成立.若存在,求出
的取值范围; 若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358556911632.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855707457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855816447.png)
(2)是否存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855847440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855878648.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855894744.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855925337.png)
(1)
。(2)存在,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855972589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855941858.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855972589.png)
试题分析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358559881345.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856019424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856050823.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855816447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856097516.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855925337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856144495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855816447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855941858.png)
(2)假设存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855847440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856393985.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855847440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856144495.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855816447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856456667.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856487510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856502584.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855816447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856549442.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358565651731.png)
因此,对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358565801083.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856612923.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856627924.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856643892.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235856658596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855847440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855925337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235855972589.png)
点评:利用导数研究含参函数的单调区间,关键是解不等式,因此要研究含参不等式的解法,应注意对参数的讨论;研究是否存在问题,通常先假设存在,转化为封闭性问题,对于恒成立问题,一般应利用到函数的最值,而最值的确定又通常利用导数的方法解决.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目