题目内容
设平面直角坐标系中,设二次函数的图像与两坐标轴有三个交点,经过这三个交点的圆记为。求:
(1)求实数的取值范围。
(2)求圆的方程。
(3)问圆是否经过某定点(其坐标与无关)?请证明你的结论。
解:本小题主要考查二次函数图象与性质、圆的方程的求法.
(Ⅰ)令=0,得抛物线与轴交点是(0,b);
令,由题意b≠0 且Δ>0,解得b<1 且b≠0.
(Ⅱ)设所求圆的一般方程为
令=0 得这与=0 是同一个方程,故D=2,F=.
令=0 得=0,此方程有一个根为b,代入得出E=b1.
所以圆C 的方程为.
(Ⅲ)圆C 必过定点(0,1)和(-2,1).
证明如下:将(0,1)代入圆C 的方程,得左边=0+1+2×0-(b+1)+b=0,右边=0,
所以圆C 必过定点(0,1).
同理可证圆C 必过定点(-2,1).
练习册系列答案
相关题目