题目内容
【题目】已知椭圆的中心在原点,焦点在轴上,为椭圆短轴的一个端点,为椭圆的右焦点,线段的延长线与椭圆相交于点,且.
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于,两点,为坐标原点,若直线与的斜率之积为,求的取值范围.
【答案】(1);(2).
【解析】
(1)由题意得b=2,由,得到,代入椭圆方程,结合a2=b2+c2,联立解出即可.
(2)解法一:先考虑斜率存在时,设直线的方程为,与椭圆方程联立,将条件坐标化,把根与系数的关系代入可得:,代入中,化简得,又,可得所求范围,再考虑斜率不存在时,求得点A,B坐标,计算数量积,与k存在时的范围取并集即可.
解法二:设直线OA斜率为k,将直线OA的方程与椭圆联立,求得A的坐标,利用写出B的坐标,代入化简后,利用基本不等式求得最值.
(1)设椭圆的方程为,右焦点,
因为为椭圆短轴的一个端点,则.因为,则点.
因为点在椭圆上,则,即.
又,则,得,所以椭圆的标准方程是.
(2)解法一:当直线的斜率存在时,设直线的方程为,
代入椭圆方程,得,即.
设点,,则,.
因为,则,即,即,
即,所以,
即,化简得.
所以 .
因为 ,,则,
所以.
又,则,即,则,所以.
当直线的斜率不存在时,点,关于轴对称,则.
因为,不妨设,则.联立与,得点,,或点,,此时.
综上分析,的取值范围是.
解法二:因为,设,则.
设点,,则,即,
所以.
由,得,即,所以.
同理,.
所以 .
因为,当且仅当,即时取等号,则.
即,且,所以的取值范围是.
【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:
每月完成合格产品的件数(单位:百件) | |||||
频数 | 10 | 45 | 35 | 6 | 4 |
男员工人数 | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?
非“生产能手” | “生产能手” | 合计 | |
男员工 | |||
女员工 | |||
合计 |
(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.
附:,
.
【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.