题目内容
6.设各项为正数的数列{an}的前n和为Sn,且Sn满足:${S_n}^2-({n^2}+n-3){S_n}-3({n^2}+n)=0,n∈{N_+}$.等比数列{bn}满足:${log_2}{b_n}+\frac{1}{2}{a_n}=0$.(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=an•bn,求数列{cn}的前n项的和Tn;
(Ⅲ) 证明:对一切正整数n,有$\frac{1}{{{a_1}({a_1}+1)}}+\frac{1}{{{a_2}({a_2}+1)}}+…+\frac{1}{{{a_n}({a_n}+1)}}<\frac{1}{3}$.
分析 (I)当n=1时,$S_1^2+{S_1}-6=0$,而Sn>0即a1=S1,当n≥2时,$({S_n}+3)({S_n}-{n^2}-n)=0$,可得${S_n}={n^2}+n$,再利用当n≥2时,an=Sn-Sn-1可得an.由于${log_2}{b_n}+\frac{1}{2}{a_n}=0$.即可得出bn.
(II)cn=an•bn=n$(\frac{1}{2})^{n-1}$.利用“错位相减法”与等比数列的前n项和公式即可得出.
(Ⅲ)当k∈N+时${k^2}+\frac{k}{2}>{k^2}+\frac{k}{2}-\frac{3}{16}=(k-\frac{1}{4})(k+\frac{3}{4})$,可得$\frac{1}{{{a_k}({a_k}+1)}}=\frac{1}{2k(2k+1)}=\frac{1}{4}\frac{1}{{k(k+\frac{1}{2})}}<\frac{1}{4}\frac{1}{{(k-\frac{1}{4})(k+\frac{3}{4})}}=\frac{1}{4}[\frac{1}{{k-\frac{1}{4}}}-\frac{1}{{(k+1)-\frac{1}{4}}}]$,利用“裂项求和”即可得出.
解答 (I)解:当n=1时,$S_1^2+{S_1}-6=0$,而Sn>0即a1=S1=2
当n≥2时,$({S_n}+3)({S_n}-{n^2}-n)=0$,
∴${S_n}={n^2}+n$,
当n≥2时,an=Sn-Sn-1=2n.
当n=1时也成立,
∴an=2n.
∵${log_2}{b_n}+\frac{1}{2}{a_n}=0$.
∴${b_n}={(\frac{1}{2})^n}$.
(II)解:cn=an•bn=n$(\frac{1}{2})^{n-1}$.
∴Tn=1×1+$2×\frac{1}{2}$+3×$(\frac{1}{2})^{2}$+…+$n×(\frac{1}{2})^{n-1}$,(1)
$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+2×(\frac{1}{2})^{2}$+…+(n-1)×$(\frac{1}{2})^{n-1}$+n×$(\frac{1}{2})^{n}$,(2),
(1)-(2)得$\frac{1}{2}{T_n}=1+{(\frac{1}{2})^1}+{(\frac{1}{2})^2}+…+{(\frac{1}{2})^{n-1}}-n×{(\frac{1}{2})^n}$=$\frac{{1-{{(\frac{1}{2})}^n}}}{{1-\frac{1}{2}}}-n•{(\frac{1}{2})^n}$,
∴${T_n}=4-{(\frac{1}{2})^{n-1}}(n+2)$.
(Ⅲ)证明:当k∈N+时${k^2}+\frac{k}{2}>{k^2}+\frac{k}{2}-\frac{3}{16}=(k-\frac{1}{4})(k+\frac{3}{4})$,
∴$\frac{1}{{{a_k}({a_k}+1)}}=\frac{1}{2k(2k+1)}=\frac{1}{4}\frac{1}{{k(k+\frac{1}{2})}}<\frac{1}{4}\frac{1}{{(k-\frac{1}{4})(k+\frac{3}{4})}}=\frac{1}{4}[\frac{1}{{k-\frac{1}{4}}}-\frac{1}{{(k+1)-\frac{1}{4}}}]$,
$\begin{array}{l}∴\frac{1}{{{a_1}({a_1}+1)}}+\frac{1}{{{a_2}({a_2}+1)}}+…+\frac{1}{{{a_n}({a_n}+1)}}\\<\frac{1}{4}[(\frac{1}{{1-\frac{1}{4}}}-\frac{1}{{2-\frac{1}{4}}})+(\frac{1}{{2-\frac{1}{4}}}-\frac{1}{{3-\frac{1}{4}}})+…+(\frac{1}{{n-\frac{1}{4}}}-\frac{1}{{n+1-\frac{1}{4}}})]\\=\frac{1}{4}(\frac{1}{{1-\frac{1}{4}}}-\frac{1}{{n+1-\frac{1}{4}}})=\frac{1}{3}-\frac{1}{4n+3}<\frac{1}{3}\end{array}$
点评 本题考查了递推关系、“错位相减法”、等比数列的通项公式及其前n项和公式、“裂项求和”方法、不等式的性质,考查了推理能力与计算能力,属于中档题.
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
A. | {1,2} | B. | [6,+∞) | C. | [12,+∞) | D. | (-∞,6] |
A. | 4 | B. | 5 | C. | 6 | D. | 7 |