题目内容

设函数f(x)=
3
sinθ
3
x3+
cosθ
2
x2+4x-1
,其中θ∈[0, 
6
]
,则导数f'(-1)的取值范围(  )
A、[3,6]
B、[3, 4+
3
]
C、[4-
3
, 6]
D、[4-
3
, 4+
3
]
分析:先对原函数进行求导可得到f(x)的解析式,将x=-1代入可求取值范围.
解答:解:∵f(x)=
3
sinθ
3
x3+
cosθ
2
x2+4x-1

f(x)=
3
sinθx2+cosθx+4

f(-1)=
3
sinθ-cosθ+4
=2sin(θ-
π
6
)+4
θ∈[0, 
6
]
θ-
π
6
∈[-
π
6
3
]
∴sin(θ-
π
6
)
∈[-
1
2
,1]

∴f(-1)∈[3,6]
故选A.
点评:本题主要考查函数求导和三角函数求值域的问题.这两个方面都是高考中必考内容,难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网