题目内容

【题目】某校高二年级在一次数学测验后,随机抽取了部分学生的数学成绩组成一个样本,得到如下频率分布直方图:
(1)求这部分学生成绩的样本平均数 和样本方差s2(同一组数据用该组的中点值作为代表)
(2)由频率分布直方图可以认为,该校高二学生在这次测验中的数学成绩X服从正态分布 . ①利用正态分布,求P(X≥129);
②若该校高二共有1000名学生,试利用①的结果估计这次测验中,数学成绩在129分以上(含129分)的学生人数.(结果用整数表示)
附:① ≈14.5②若X~N(μ,σ2),则P(μ﹣2σ<X<μ+2σ)=0.9544.

【答案】
(1)解:由频率分布直方图可知: +130×0.005)×10=100分

s2=(﹣30)2×0.005×10+(﹣20)2×0.010×10+(﹣10)2×0.020×10+0×0.030×10+102×0.020×10+202×0.010×10+302×0.005×10=210


(2)解:①由(1)知:X~N(100,210),

从而P(X≥129)=P(X≥100+2×14.5)= = =0.0228

②由①知:这次测验,该校高二1000名学生中,成绩在12(9分)以上的人数约为1000×0.0228=22.8≈23


【解析】(1)由同一组数据用该组的中点值作为代表,利用平均数公式和方差公式能求出抽取的样本平均数x和样本方差s2 . (2)①由(1)知:X~N(100,210),从而P(X≥129)=P(X≥100+2×14.5),可得结论;②由①知:这次测验,该校高二1000名学生中,成绩在12(9分)以上的人数约为1000×0.0228.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网