题目内容

【题目】若f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=(
A.﹣4
B.﹣2
C.2
D.4

【答案】B
【解析】解:∵f(x)=ax4+bx2+c, ∴f′(x)=4ax3+2bx,
∴f′(1)=4a+2b=2,
∴f′(﹣1)=﹣4a﹣2b=﹣(4a+2b)=﹣2,
故选:B.
【考点精析】本题主要考查了基本求导法则的相关知识点,需要掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网