题目内容
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴为极轴的极坐标系中,圆的方程.
(1)写出直线的普通方程和圆的直角坐标方程;
(2)若点的直角坐标为,圆与直线交于两点,求弦中点的直角坐标和的值.
【答案】(1)直线的普通方程为,圆的直角坐标方程为(2)弦的中点,
【解析】
(1)消去参数t可得直线的参数方程,利用极坐标化直角坐标的方法可得圆的直角坐标.
(2)联立直线的参数方程和圆的直角坐标方程,结合参数方程的几何意义和韦达定理即可确定中点坐标和的值.
(1)由(为参数),得直线的普通方程为.
又由得圆的直角坐标方程为,即,
.
(2)直线的参数方程代入圆的直角坐标方程,
得,即.
由于,故可设是上述方程的两实数根,则
又直线过点,两点对应的参数分别为,
弦的中点对应的参数,
代入参数方程中得其直角坐标为
.
【题目】某电动汽车“行车数据”的两次记录如下表:
记录时间 | 累计里程 (单位:公里) | 平均耗电量(单位:公里) | 剩余续航里程 (单位:公里) |
2019年1月1日 | 4000 | 0.125 | 280 |
2019年1月2日 | 4100 | 0.126 | 146 |
(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量=,剩余续航里程=,下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是
A. 等于12.5B. 12.5到12.6之间
C. 等于12.6D. 大于12.6
【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | ||
第2组 | ① | ||
第3组 | 30 | ② | |
第4组 | 20 | ||
第5组 | 10 |
(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.