题目内容

已知A、B、C是锐角△ABC的三个内角,向量
p
=(-sinA,1)
q
=(1,cosB)
,则
p
q
的夹角是(  )
A、锐角B、钝角C、直角D、不确定
分析:利用三角形为锐角三角形得到A+B>90°得到90°>A>90°-B>0;利用正弦函数的单调性判断出sinA>cosB;利用向量的数量积公式求出两个向量的数量积,判断出数量积小于0,判断出夹角为钝角.
解答:解:∵A、B、C是锐角△ABC的三个内角
∴A+B>90°
∴90°>A>90°-B>0
∴sinA>sin(90°-B)
即sinA>cosB
p
q
=-sinA+cosB<0

p
q
的夹角为钝角
故选B
点评:本题考查锐角三角形三角满足的条件、考查正弦函数的单调性、考查向量的数量积公式、考查通过数量积判断向量的夹角问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网