题目内容

8.设Sn=$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n(n+1)}$,且Sn=$\frac{7}{8}$,则n的值为(  )
A.4B.5C.6D.7

分析 由于$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂项求和”即可得出.

解答 解:∵$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴Sn=$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n(n+1)}$
=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$,
由Sn=$\frac{7}{8}$=$1-\frac{1}{n+1}$,
解得n=7.
故选:D.

点评 本题考查了“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网